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Basic cross section

Coherent elastic neutrino nucleus scattering cross section
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• E : neutrino energy, T : nuclear recoil

• Q2 = 2E
2
TM

(E2
−ET )

: squared momentum transfer

• QW = N − Z(1 − 4 sin2 θW ): weak charge

• F(Q2): form factor - largest uncertainty in cross section

Assumes a spin zero nucleus, no non-standard model interactions
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Making a theoretical prediction

Fold cross section (previous slide) with incoming neutrino spectrum

(e.g. left figure) to find nuclear recoil spectrum (right figure)

νs from π/µ decay at rest
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Fig. from Scholberg 2006

Spectrum of nuclear recoils
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Fig. from Patton et al 2012
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Beyond First Detection of CEνNS
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Use deviations in the shape of this curve to understand the form factor.
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Form factor

Understanding the structure of the nucleus

Form factor, F (Q2) is the Fourier transform of the density

distributions of protons and neutrons in the nucleus.

F (Q2) =
1

QW

∫

[

ρn(r) − (1 − 4 sin2 θW )ρp(r)
] sin (Qr)

Qr
r2dr

density distributions

〈R2〉
1/2
SGII = 3.405 fm

〈R2〉
1/2
G202 = 3.454 fm

5



Form factor

Form factor, F (Q2) is the Fourier transform of the density

distributions of protons and neutrons in the nucleus.

F (Q2) =
1

QW

∫

[

ρn(r) − (1 − 4 sin2 θW )ρp(r)
] sin (Qr)

Qr
r2dr

• Proton form factor term is suppressed by 1 − 4 sin2 (θW )

• Neutron form factor is not suppressed

CEνNS can be used to determine the neutron form factor Amanik et al 2009
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Form factor

F (Q2) =
1

QW

∫

[

ρn(r) − (1 − 4 sin2 θW )ρp(r)
] sin (Qr)

Qr
r2dr

• Proton form factor can be measured by electromagnetic probes.

• Neutron form factor is less well known:

• Neutron scattering - many measurements - requires theory to go

from cross section to form factor

• Parity violating electron scattering - PREX at Jlab Pb at one Q2,

extract APV ∼ 0.65 × 10−6 then determine neutron radius, now

also CREX at Jlab on Ca

CEνNS recoil curve can be fit: neutron radius and higher moments
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Nuclear-Neutron form factor from CEνNS

Taylor expand the sin(Qr) form factor:

Fn(Q2) = 1
QW

∫

ρn(r) sin (Qr)
Qr r2dr ≈ N

QW

(1− Q2

3! 〈R
2
n〉+ Q4

5! 〈R
4
n〉 − ...)

Moments of the den-

sity distribution, 〈R2
n〉,

〈R4
n〉 characterize the

form factor. Patton et al 2012, 2013
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The moments, 〈R2〉1/2, 〈R4〉1/4, change the event curve

Fn(Q2) ≈ N
QW

(1 − Q2

3! 〈R
2
n〉 + Q4

5! 〈R
4
n〉 − ...)

original event curve
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Look at differences in event curves with increased neutron radius and

fourth moment for muon decay at rest neutrinos on argon.
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Liquid argon scenario
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3.5 tonnes argon 16m from SNS,

18m from Daeδalus, 30m from ESS

for one year. Shows 40%, 91% and

97% confidence contours. Crosses

are theory predictions.

Fig. from Patton et al 2012

Band is measurement from neutron scattering. Top plot: normalization

of neutrino flux not known, bottom plot normalization of neutrino flux

known.
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Xenon requires a weighted sum of isotopes

〈R2〉
1/2
eff =

(∑

i N2
i XiMi〈R

2
i 〉

∑

i N2
i XiMi

)1/2

(1)
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Xenon is more constraining
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300 kg Xenon 16m from SNS, 18m

from Daeδalus, 30m from ESS for

one year. Shows 40%, 91% and

97% confidence contours. Crosses

are theory predictions.

fig. from Patton et al 2012

Top plot: normalization of neutrino flux not known, bottom plot

normalization of neutrino flux known.
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Shape uncertainty and sensitivity to the neutron radius
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fig. from Patton et al 2014

Vertical axis is uncorrelated error on each 10keV bin. Horizontal axis is

a measure of the number of recoils in the detector. Curves show the

sensitvity for the nuclear-neutron radius.
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Summary

• CEνNS provides an alternative, complementary method for

studying the nuclear-neutron distribution

• the neutron radius pulls the event curve down at lower recoil

energy

• the fourth moment pulls it up at higher recoil energy

• fitting the event curve to these two parameters provides a

measurement of the these moments

• understanding the (experimental) shape uncertainty is a crucial

• to determine the neutron radius to 2%, the uncorrelated shape

uncertainty has to be understood at tenths of a percent
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