CsI[Na] for CEνNS detection at the SNS

NCSU CEνNS workshop, Jan 2015

J.I. Collar, UC
“Tendons”

San Onofre Unit 3 core 20m that way

LN2 generation and auto-transfer

30 mwe

Everyone needs a hobby

BaDAss (Background Detector Assembly)
Everyone needs a hobby

Giorgio dixit: “first to put CEνNS signal and backgrounds on a lin-lin plot…”
Why CsI[Na]? (NIM A773 (2014) 56)

- Large $N^2 \Rightarrow$ large x-section.
- Cs and I surround Xe in Periodic Table: they behave much like a single recoiling species, greatly simplifying understanding the NR response.
- Quenching factor in energy ROI sufficient for ~7 keVnr threshold (we have measured this).
- Statistical NR/ER discrimination is possible at low-E (but will need further improved signal-to-background).
- Sufficiently low in intrinsic backgrounds (U, Th, K-40, Rb-87, Cs-134,137) Measurements in complete SNS shield and 6 m.w.e. indicate we are ready
- Practical advantages: High light yield (64 ph/keVee), optimal match to bialkali PMTs, rugged, room temperature, inexpensive ($1/g), modest afterglow (CsI[Tl] not a viable option for surface experiment).
- Expect ~550 ν recoils/year in 14 kg detector under construction.

(boule grown at AMCRYS, detector already at UC)
Why CsI[Na]? (NIM A773 (2014) 56)

- Large N² => large x-section.
- Cs and I surround Xe in Periodic Table: they behave much like a single recoiling species, greatly simplifying understanding the NR response.
- Quenching factor in energy ROI sufficient for ~7 keVnr threshold (we have measured this).

- Statistical NR/ER discrimination is possible at low-E (but will need further improved signal-to-background).

- Sufficiently low in intrinsic backgrounds (U, Th, K-40, Rb-87, Cs-134,137) Measurements in complete SNS shield and 6 m.w.e. indicate we are ready

- Practical advantages: High light yield (64 ph/keVee), optimal match to bialkali PMTs, rugged, room temperature, inexpensive ($1/g), modest afterglow (CsI[Tl] not a viable option for surface experiment).

- Expect ~550 ν recoils/year in 14 kg detector under construction.
 (boule grown at AMCRYST, detector already at UC)

CsI[Tl] not an option due to excessive afterglow
Why CsI[Na]? (NIM A773 (2014) 56)

- Large $N^2 \Rightarrow$ large x-section.
- Cs and I surround Xe in Periodic Table: they behave much like a single recoiling species, greatly simplifying understanding the NR response.
- Quenching factor in energy ROI sufficient for ~ 7 keVnr threshold (we have measured this).
- Statistical NR/ER discrimination is possible at low-E (but will need further improved signal-to-background).
- Sufficiently low in intrinsic backgrounds (U, Th, K-40, Rb-87, Cs-134,137) Measurements in complete SNS shield and 6 m.w.e. indicate we are ready.
- Practical advantages: High light yield (64 ph/keVee), optimal match to bialkali PMTs, rugged, room temperature, inexpensive ($\sim 1/g), modest afterglow (CsI[Tl] not a viable option for surface experiment).
- Expect $\sim 550 \nu$ recoils/year in 14 kg detector under construction.

(boule grown at AMCRYS, detector already at UC)
Why CsI[Na]? (NIM A773 (2014) 56)

- Large N^2 => large x-section.
- Cs and I surround Xe in Periodic Table: they behave much like a single recoiling species, greatly simplifying understanding the NR response.
- Quenching factor in energy ROI sufficient for ~7 keVnr threshold (we have measured this).
- Statistical NR/ER discrimination is possible at low-E (but will need further improved signal-to-background).
- Sufficiently low in intrinsic backgrounds (U, Th, K-40, Rb-87, Cs-134,137) Measurements in complete SNS shield and 6 m.w.e. indicate we are ready.
- Practical advantages: High light yield (64 ph/keVee), optimal match to bialkali PMTs, rugged, room temperature, inexpensive ($1/g), modest afterglow (CsI[Tl] not a viable option for surface experiment).
- Expect ~550 ν recoils/year in 14 kg detector under construction. (boule grown at AMCRYSL, detector already at UC)

Simultaneous ER and NR low-E response measured via Compton scattering and D-D neutron gun (see PRC 88(2013)035806)
Why CsI[Na]? (NIM A773 (2014) 56)

- Large $N^2 \Rightarrow$ large x-section.
- Cs and I surround Xe in Periodic Table: they behave much like a single recoiling species, greatly simplifying understanding the NR response.
- Quenching factor in energy ROI sufficient for ~ 7 keVnr threshold (we have measured this).
- Statistical NR/ER discrimination is possible at low-E (but will need further improved signal-to-background).
- Sufficiently low in intrinsic backgrounds (U, Th, K-40, Rb-87, Cs-134,137) Measurements in complete SNS shield and 6 m.w.e. indicate we are ready)
- Practical advantages: High light yield (64 ph/keVee), optimal match to bialkali PMTs, rugged, room temperature, inexpensive ($1/g), modest afterglow (CsI[Tl] not a viable option for surface experiment).
- Expect ~ 550 ν recoils/year in 14 kg detector under construction.
 (boule grown at AMCRY, detector already at UC)
Why CsI[Na]? (NIM A773 (2014) 56)

• Large $N^2 \Rightarrow$ large x-section.

• Cs and I surround Xe in Periodic Table: they behave much like a single recoiling species, greatly simplifying understanding the NR response.

• Quenching factor in energy ROI sufficient for ~ 7 keVnr threshold (we have measured this).

• Statistical NR/ER discrimination is possible at low-E (but will need further improved signal-to-background).

• Sufficiently low in intrinsic backgrounds (U, Th, K-40, Rb-87, Cs-134,137) Measurements in complete SNS shield and 6 m.w.e. indicate we are ready.

• Practical advantages: High light yield (64 ph/keVee), optimal match to bialkali PMTs, rugged, room temperature, inexpensive ($1/g), modest afterglow (CsI[Tl] not a viable option for surface experiment).

• Expect ~ 550 ν recoils/year in 14 kg detector under construction.

(boule grown at AMCRYS, detector already at UC)
Why CsI[Na]? (NIM A773 (2014) 56)

• Large N² => large x-section.

• Cs and I surround Xe in Periodic Table: they behave much like a single recoiling species, greatly simplifying understanding the NR response.

• Quenching factor in energy ROI sufficient for ~7 keVnr threshold (we have measured this).

• Statistical NR/ER discrimination is possible at low-E (but will need further improved signal-to-background).

• Sufficiently low in intrinsic backgrounds (U, Th, K-40, Rb-87, Cs-134,137) Measurements in complete SNS shield and 0 m.w.e. indicate we are ready

• Practical advantages: High light yield (64 ph/keVee), optimal match to bialkali PMTs, rugged, room temperature, inexpensive ($/g), modest afterglow (CsI[Tl] not a viable option for surface experiment).

• Expect ~550 ν recoils/year in 14 kg detector under construction. (boule grown at AMCRYS, detector already at UC)
Highlights of feasibility study

- Study of backgrounds with 2 kg detector within a full shield (except n moderator) at 6 m.w.e. (~similar to SNS basement).
- Threshold ~7 keVnr (4 PE) demonstrated.
- Clear CENNS excess expected following a 2-3 year run with 14 kg detector. Some ~550 ev/year expected in 4-20 PE region. Measured steady-state backgrounds are sufficiently low (but further improvements seem possible → neutron moderator, fancier treatment of discrimination against afterglow).
- GEANT simulation (transport of target neutrons to basement) using UC cluster. CPU-intensive! Several sanity checks performed. Confirms that basement location should keep target neutrons at bay.
- ν_e CC reaction in Pb provides largest foreseeable background. Several ways to discriminate CENNS and this reaction.
- Should we measure 208Pb(ν_e,e)208Bi first? Advantages: 1) quick measurement eliminates this unknown, 2) a first ν physics result at the SNS at hand → useful for HALO, traction with agencies.
Highlights of feasibility study

- Study of backgrounds with 2 kg detector within a full shield (except n moderator) at 6 m.w.e. (similar to SNS basement).

- Threshold ~7 keVnr (4 PE) demonstrated.

- Clear CENNS excess expected following a 2-3 year run with 14 kg detector. Some ~550 ev/year expected in 4-20 PE region. Measured steady-state backgrounds are sufficiently low (but further improvements seem possible → neutron moderator, fancier treatment of discrimination against afterglow).

- GEANT simulation (transport of target neutrons to basement) using UC cluster. CPU-intensive! Several sanity checks performed. Confirms that basement location should keep target neutrons at bay.

- ν_e CC reaction in Pb provides largest foreseeable background. Several ways to discriminate CENNS and this reaction.

- Should we measure 208Pb(ν_e,e)208Bi first? Advantages: 1) quick measurement eliminates this unknown, 2) a first ν physics result at the SNS at hand → useful for HALO, traction with agencies.
Preliminaries: *in situ* NIN measurement
Preliminaries: *in situ* NIN measurement

- If x-sections are what is expected, we should have a measurement of CC (+ perhaps NC) NIN production in Pb within the next few months.

- Main purpose of ongoing measurement is to educate CsI[Na] shield design. We plan a much higher statistics measurement with dedicated NIN detectors (“NIN-cubes”), also using other targets (G. Rich talk tomorrow)

- We need theory help already!
1) A best effort at calculating CC NIN x-section specifically for SNS ν energies. We should be able to distinguish between predictions from different nuclear models.

Low-energy neutrino scattering measurements at future spallation source facilities

<table>
<thead>
<tr>
<th></th>
<th>10</th>
<th>20</th>
<th>50</th>
<th>ρ (g cm⁻³)</th>
<th>⟨σ⟩_{DAR}</th>
</tr>
</thead>
<tbody>
<tr>
<td>¹²C (in C₁₂H₁₈)</td>
<td>1.47</td>
<td>3.84</td>
<td>63</td>
<td>0.992</td>
<td>\approx 0.14 [10, 13]</td>
</tr>
<tr>
<td>¹⁶O (in water)</td>
<td>998</td>
<td>261</td>
<td>43</td>
<td>1.0</td>
<td>0.131 [56]</td>
</tr>
<tr>
<td>⁴⁰Ar</td>
<td>8.86</td>
<td>2.31</td>
<td>380</td>
<td>1.43</td>
<td>2.56 [44]</td>
</tr>
<tr>
<td>⁵⁶Fe</td>
<td>9.10</td>
<td>2.33</td>
<td>377</td>
<td>7.87</td>
<td>3.53 [56]</td>
</tr>
<tr>
<td>¹⁰⁰Mo</td>
<td>17.36</td>
<td>4.42</td>
<td>716</td>
<td>10.28</td>
<td>11.95 [56]</td>
</tr>
<tr>
<td>²⁰⁸Pb</td>
<td>13.49</td>
<td>3.82</td>
<td>1430</td>
<td>11.34</td>
<td>49.6 [56]</td>
</tr>
<tr>
<td>²⁰⁸Pb + 1n</td>
<td>9.20</td>
<td>2.40</td>
<td>677</td>
<td>23.5</td>
<td>23.5 [28]</td>
</tr>
<tr>
<td>²⁰⁸Pb + 2n</td>
<td>9.20</td>
<td>2.40</td>
<td>390</td>
<td>13.5</td>
<td>13.5 [28]</td>
</tr>
</tbody>
</table>

Situation for Fe, very similar for Pb

(this is what is used for the expectations in previous transparency, post corrections <- checked with authors)
Dangling ends desperately needing theory input:

2) Best effort at calculating spectrum of neutron emission energies. Presently using a simple spallation spectrum in Pb as a place holder (NIMA 354 (1995) 553). We should be able to eventually deconvolve this emission spectrum with data from a high-statistics run using the NIN-cubes (G. Rich talk tomorrow).

3) Is the assumption of isotropic neutron emission correct?

FIG. 6. Neutron energy spectrum produced by the charged-current \((\nu_e, e^-) \) reaction on \(^{208}\text{Pb} \). The calculation has been performed for different supernova neutrino spectra characterized by the parameters \((T, \alpha)\). Note that the cross sections for \((T, \alpha) = (4,0)\) and \((3,3)\) neutrinos have been scaled by a factor of 5.
Dangling ends desperately needing theory input:

4) NC NINs are prompt, but in principle only a ~10% fraction of CC NINs. We may be able to measure these too, or to at least place an upper limit to the x-section. Best effort needed to calculate ν_μ NIN x-section at exactly 29.9 MeV (resonances could make a significant difference). We plan to run with detectors outside Pb, to help disentangle NC NINs from POT neutrons.

FIG. 3. Excitation spectrum of the 208Pb nucleus for photoabsorption (upper part) in comparison to the spectrum excited by neutral current neutrino scattering (lower part), which is decomposed into the dominant multipole contributions.