

Phil Barbeau, Duke University

(COHERENS

J. Adam, D. Akimov, P. Barbeau, P. Barton,
A. Bolozdyna, B. Cabrera-Palmer, J. Collar,
Robert Cooper, Ren Cooper, D. Dean, Y.
Efremenko, S. Elliott, N. Fields, M. Foxe, A.
Galindo-Uribarri, M. Gerling, M. Green, G.
Green, D. Hornback, T. Hossbach, E.
Iverson, A. Khromov, S. Klein, A. Kumpan,
W. Lu, D. Markoff, M. McIntyre, P. Mueller, J.
Newby, J. Orrell, S. Penttila, G. Perumpilly,
D. Radford, J. Raybern, H. Ray, D. Reyna,
G. Rich, D. Rimal, K. Scholberg, B. Scholz,
S. Suchyta, R. Tayloe, K. Vetter, C.-H. Yu

- Extensive experience searching in the Dark Matter, Coherent Neutrino Scattering efforts and other rare event searches
- CoGeNT, LUX, Zeplin, CAST, Cosl, IGEX, Majorana Demonstrator, EXO, ULGen, Double Chooz, SK, T2K, SNO, COUPP/PICO...
- ...and neutron measurement experience (think backgrounds) from the security sector

- A collaboration has recently formed from disparate but experienced groups, bringing together individually developed detector technologies with the goal of finally measuring the coherent neutrino-nucleus scattering cross-section at the Spallation Neutron Source in Oak Ridge.
- The collaboration's stated scientific goal is to measure coherent neutrino-nucleus scattering on numerous nuclei, and with several detector technologies with increasing precision on the total and differential rate.

- A collaboration has recently formed from disparate but experienced groups, bringing together individually developed detector technologies with the goal of finally measuring the coherent neutrino-nucleus scattering cross-section at the Spallation Neutron Source in Oak Ridge.
- The collaboration's stated scientific goal is to measure coherent neutrino-nucleus scattering on numerous nuclei, and with several detector technologies with increasing precision on the total and differential rate.

P-Type Point Contact HPGe

- A collaboration has recently formed from disparate but experienced groups, bringing together individually developed detector technologies with the goal of finally measuring the coherent neutrino-nucleus scattering cross-section at the Spallation Neutron Source in Oak Ridge.
- The collaboration's stated scientific goal is to measure coherent neutrino-nucleus scattering on numerous nuclei, and with several detector technologies with increasing precision on the total and differential rate.

P-Type Point Contact HPGe Low-Background Csl(Na)

- A collaboration has recently formed from disparate but experienced groups, bringing together individually developed detector technologies with the goal of finally measuring the coherent neutrino-nucleus scattering cross-section at the Spallation Neutron Source in Oak Ridge.
- The collaboration's stated scientific goal is to measure coherent neutrino-nucleus scattering on numerous nuclei, and with several detector technologies with increasing precision on the total and differential rate.

P-Type Point Contact HPGe Low-Background Csl(Na)

2-Phase LXe

- A collaboration has recently formed from disparate but experienced groups, bringing together individually developed detector technologies with the goal of finally measuring the coherent neutrino-nucleus scattering cross-section at the Spallation Neutron Source in Oak Ridge.
- The collaboration's stated scientific goal is to measure coherent neutrino-nucleus scattering on numerous nuclei, and with several detector technologies with increasing precision on the total and differential rate.
- Other targets people have been thinking about:
 - Na in Nal(TI), ²⁰Ne, ²²Ne, ²⁰Ne, ²²Ne, Ar...
 - ...C, F, O, S...

Low energy nuclear recoils

- Lots of experience measuring low energy nuclear recoils within the collaboration (Chicago, Duke, ITEP)
- A facility has been developed at Duke/TUNL to enable the precision calibration of all of these detectors. Csl(Na) and Nal(Tl) data in the can.

Low energy nuclear recoils

- Lots of experience measuring low energy nuclear recoils within the collaboration (Chicago, Duke, ITEP)
- A facility has been developed at Duke/TUNL to enable the precision calibration of all of these detectors. *CsI(Na) and NaI(TI) data in the can.*

Low energy nuclear recoils

- Lots of experience measuring low energy nuclear recoils within the collaboration (Chicago, Duke, ITEP)
- A facility has been developed at Duke/TUNL to enable the precision calibration of all of these detectors. CsI(Na) and NaI(TI) data in the can.

The Spallation Neutron Source

- Decay-at-Rest Neutrino Source
 - DIF is neglibible
- Current v flux calculations -> $1.1 \times 10^7 v \text{ cm}^{-1} \text{ s}^{-1} \text{ at } 20 \text{ m for } 1.2$ MW operation

The Spallation Neutron Source

- Pulsed: 700 ns width at 60 Hz (background reduction)
- Depending on detector characteristics -> 6x10⁻⁵ to 2x10⁻⁴ background rejection

Backgrounds

But let us not forget that this is a facility designed to produce neutrons, and that those neutrons are pulsed with the same time structure of the neutrinos (**with the exception of the characteristic decay time of the muon**).

These neutrons can have very high energies (>100 MeV)

This heat map image of the high energy neutron flux in the SNS bay was produced using a coded aperture neutron detector array.

 There is an ongoing campaign of overburden and neutron background measurements

 There is an ongoing campaign of overburden and neutron background measurements BL 14a

- So far, the basement is the most promising location.
- Presence of some easily shielded 511
 keV γ's from an air cooling loop.

n/cm^2/MeV/s 01 10 Measured Neutron Events 90% Confidence Upper Bound 10⁻² 10⁻³ 10-4 Ē 10⁻⁵ 20 180 20 En, MeV 60 120 160 200 40 80 n 100 140

basement: neutron flux (2.7us around trigger), n/MeV/cm2/s

- So far, the basement is the most promising location.
- Presence of some easily shielded 511 keV γ's from an air cooling loop.
- 8 m.w.e. overburden •

Yet another background: v-induced neutrons

- The detector designs tend to utilize several tons of lead in their environmental shields
- Neutrinos can interact with the lead and produce a large flux of pulsed neutrons very near to the detectors
- For a convincing CEvNS measurement, this crosssection needs to be measured, and the neutrons need to be dealt with.

CsI(Na) detector and shield

$$\nu_e + {}^{208}Pb \Rightarrow {}^{208}Bi^* + e^- \qquad (CC)$$

$$\downarrow \\ {}^{208-y}Bi + x\gamma + yn$$

Measuring the ν -induced neutrons

- Several palletized (mobile) lead targets with LS neutron detectors are to be delivered to the SNS position c5 next week.
- As will the Csl(Na)-shield, with a LS in place of the Csl(Na) crystal, in order to measure the neutron background in situ.

COHERENT deployment at SNS

Deployment of neutrino cubes and CsI(Na) shielding assembly took place mid-September 2014. Located in basement, ~20 m from target, with ~8 m.w.e. overburden

- Csl(Na)-detector cavity occupied by liquid scintillator cells for *in situ* background measurement
 - Following background assessment, Csl(Na) crystal can be installed and CEvNS data can be taken
- neutrino cubes can be occupied with Target of choice (Pb, Fe, W...
- NIN results will help inform design of shielding for other technologies ultimately employed by COHERENT for CEvNS measurements

COHERENT deployment at SNS

Deployment of neutrino cubes and CsI(Na) shielding assembly took place mid-September 2014. Located in basement, ~20 m from target, with ~8 m.w.e. overburden

- Csl(Na)-detector cavity occupied by liquid scintillator cells for *in situ* background measurement
 - Following background assessment, Csl(Na) crystal can be installed and CEvNS data can be taken
- neutrino cubes can be occupied with Target of choice (Pb, Fe, W...U)
- NIN results will help inform design of shielding for other technologies ultimately employed by COHERENT for CEvNS measurements

Wrapping up

- You will hear more details about CsI(Na), Ge and NINs in Coherent
- "First neutrino" is just around the corner
- First Coherent neutrino may come just after
- Phased approach to a systematically clean, higher precision measurement of the cross-section versus N
- While trying to remain focused on CEvNS, the collaboration is well positioned to take a look at other interactions
 - e.g. NINs
 - perhaps (ν, γ)
 - maybe neutrino induced fission (NIFs?)